lunes, 3 de julio de 2017

transductores y sensores




¿Qué es un Transductor?

Un transductor es un dispositivo que transforma un tipo de variable física (por ejemplo, fuerza, presión, temperatura, velocidad, etc.) en otro.

Un sensor es un transductor que se utiliza para medir una variable física de interés. Algunos de los sensores y transductores utilizados con más frecuencia son los calibradores de tensión (utilizados para medir la fuerza y la presión), los termopares (temperaturas), los velocímetros (velocidad).

Cualquier sensor o transductor necesita esta calibrado para ser útil como dispositivos de medida. La calibración es el procedimiento mediante el cual se establece la relación entre la variable medida y la señal de salida convertida.

Los transductores y los sensores pueden clasificarse en dos tipos básicos, dependiendo de la forma de la señal convertida.

Los dos tipos son:
  • Transductores analógicos
  • Transductores digitales

Los transductores analógicos: Proporcionan una señal analógica continua, por ejemplo voltaje o corriente eléctrica. Esta señal puede ser tomada como el valor de la variable física que se mide.

Los transductores digitales: Producen una señal de salida digital, en la forma de un conjunto de bits de estado en paralelo o formando una serie de pulsaciones que pueden ser contadas. En una u otra forma, las señales digitales representan el valor de la variable medida. Los transductores digitales suelen ofrecer la ventaja de ser más compatibles con las computadoras digitales que los sensores analógicos en la automatización y en el control de procesos.

Características deseables de los transductores

Exactitud

La exactitud de la medición debe ser tan alta como fuese posible. Se entiende por exactitud que le valor verdadero de la variable se pueda detectar sin errores sistemáticos positivos o negativos en la medición. Sobre varias mediciones de la variable, el promedio de error entre el valor real y el valor detectado tendera a ser cero.

Precisión

La precisión de la medición debe ser tan alta como fuese posible. La precisión significa que existe o no una pequeña variación aleatoria en la medición de la variable. La dispersión en los valores de una serie de mediciones será mínima.

Rango de funcionamiento

El sensor debe tener un amplio rango de funcionamiento y debe ser exacto y preciso en todo el rango.

Velocidad de respuesta

El transductor debe ser capaz de responder a los cambios de la variable detectada en un tiempo mínimo. Lo ideal sería una respuesta instantánea.

Calibración

El sensor debe ser fácil de calibrar. El tiempo y los procedimientos necesarios para llevar a cabo el proceso de calibración deben ser mínimos. Además, el sensor no debe necesitar una recalibración frecuente. El término desviación se aplica con frecuencia para indicar la pérdida gradual de exactitud del sensor que se produce con el tiempo y el uso, lo cual hace necesaria su recalibración.

Fiabilidad

El sensor debe tener una alta fiabilidad. No debe estar sujeto a fallos frecuentes durante el funcionamiento.

Selección de los Sensores en la automatización

La selección se basa en la decisión sobre cual es el sensor más adecuado. Esto depende del material del objeto el cual debe detectarse.

Si el objeto es metálico, se requiere un sensor inductivo. Si el objeto es de plástico, papel, o si es líquido (basado en aceite o agua), granulado o en polvo, se requiere un sensor capacitvo. Si el objeto puede llevar un imán, es apropiado un sensor magnético.

Para elegir un sensor adecuado se deben seguir estos cuatro pasos:
  • FORMA DE LA CARCASA
  • DISTANCIA OPERATIVA.
  • DATOS ELECTRÓNICOS Y CONEXIONES
  • GENERALIDADES
Clasificación de los sensores
  • Posición (potenciómetros, inductosyn, ópticos...)
  • Velocidad (eléctricos, ópticos...)
  • Aceleración
  • Proximidad (reflexión lumínica, láser, ultrasonido...)
  • Tacto (varillas, presión, polímeros...)
  • Fuerza (corriente en motores, deflexión...)
  • Visión (cámaras de tubo)

Otras clasificaciones: sencillos / complejos, activos / pasivos
Según el tipo de magnitud física a detectar podemos establecer la siguiente clasificación:

  • Posición lineal o angular.
  • Desplazamiento o deformación.
  • Velocidad lineal o angular.
  • Aceleración.
  • Fuerza y par.
  • Presión.
  • Caudal.
  • Temperatura.
  • Presencia o proximidad.
  • Táctiles.
  • Intensidad lumínica.
Otro tipo de clasificación es diferenciar entre sensores activos o pasivos. Los sensores pasivos requieren de una alimentación para efectuar su función, mientras que los activos general la señal sin necesidad de alimentación externa

Los sensores externos son los elementos que permiten al robot interactuar con su ambiente de una manera flexible. Aunque muchos de los robots actuales ( sobre todo los de las industrias) trabajan de una forma preprogramada, el uso de los sensores externos como apoyo en la ejecución de tareas es cada día más amplio. Los sensores externos dan al robot mayor independencia del entorno concreto en el que se mueven, lo que se traduce en un mayor grado de "inteligencia".

Existen tres tipos de sensores externos que suelen ser utilizados por los robots de forma general, para gran diversidad de tareas. Esto son los sensores táctiles, los de proximidad o presencia y los de alcance.

Los sensores táctiles son dispositivos que indican el contacto de algún objeto sólido con ellos mismos. Suelen ser empleados en los extremos de los brazos de robot (pinzas) para controlar la manipulación de objetos. A su vez se pueden dividir en dos tipos: de contacto y de fuerza.

Sensores de Contacto

Los sensores de contacto nos indican simplemente si ha habido contacto o no con algún objeto, sin considerar la magnitud de la fuerza de contacto. Suelen ser dispositivos sencillos cuyo uso es muy variado.

Se pueden situar en las pinzas de los brazos de robot para determinar cuando se ha cogido un objeto, pueden formar parte de sondas de inspección para determinar dimensiones de objetos, o incluso pueden situarse en el exterior de las pinzas para ir tanteando un entorno.

Estos sensores suelen ser interruptores de límite o microinterruptores, que son sencillos dispositivos eléctricos que cuando se contacta con ellos cambian de estado.




Sensores de fuerza

Los sensores de fuerza determinan, Además de si ha habido contacto con un objeto como los anteriores, la magnitud de la fuerza con la que se ha producido dicho contacto. Esta capacidad es muy útil ya que permitirá al robot poder manipular objetos de diferentes tamaños e incluso colocarlos en lugares muy precisos. Para detectar la fuerza con la que se ha contactado con un objeto existen diversas técnicas





Muñeca detectora de fuerza.

Consta de un célula de carga que se sitúa entre la muñeca y las pinzas del brazo. Su objetivo es proporcionar información sobre las tres componentes de la fuerza (Fx,Fy,Fz) y sobre sus tres momentos en velocidad con la que se mueve el brazo es considerable, resulta difícil poder controlar sus movimientos lo suficientemente rápido como para que no provoque ninguna catástrofe (como el aplastamiento de algún objeto).



Detección de articulaciones

Esta técnica se basa en la medida del par de torsión de la articulación. La medida de este par puede resultar sencilla, ya que es proporcional a la corriente que circula por el motor que provoca dicha torsión.

A pesar de que está técnica pueda parecer sencilla y fiable, tiene un problema importante. La medida del par de torsión se realiza sobre las articulaciones del brazo y no sobre el efector final (la pinza) como sería deseable, por lo que dicha torsión no solo refleja la fuerza que se ejercerá en la pinza, sino también la fuerza utilizada para mover la articulación.



Sensores de array táctil

Es un tipo especial de sensores de fuerza ya que en realidad está constituido por una matriz de pequeños sensores de fuerza. Debido a esta característica, permiten además reconocer formas en los objetos que se está manipulando. Este tipo de dispositivos suelen montarse en las pinzas de los brazos de robot.

Cada uno de los sensores de fuerza que componen la matriz suele ser una almohadilla elastomérica, que cuando se comprime cambia su resistencia eléctrica de manera proporcional a la fuerza aplicada. Midiendo esa resistencia es cuando podemos obtener la información acerca de la fuerza. La resolución de este tipo de sensores vendrá dada lógicamente por las dimensiones de la matriz de sensores.

Un factor muy importante y que puede resultar un problema al diseñar este tipo de sensores es el grado de desgaste de la superficie de contacto.


Sensores blindados y sin blindaje

Sensores blindados.- Incluyen una banda de metal que rodea al núcleo de ferrita y a la bobina. Esto ayuda a dirigir el campo electromagnético a la parte frontal del sensor.



Sensores de proximidad

Son dispositivos que detectan señales para actuar en un determinado proceso u operación, teniendo las siguientes características:
Son dispositivos que actúan por inducción al acercarles un objeto.
No requieren contacto directo con el material a sensar.
Son los más comunes y utilizados en la industria
Se encuentran encapsulados en plástico para proveer una mayor facilidad de montaje y protección ante posibles golpees




Sensores inductivos


Consiste en un dispositivo conformado por:
Una bobina y un núcleo de ferrita.
Un oscilador.
Un circuito detector (etapa de conmutación)
Una salida de estado sólido.

El oscilador crea un campo de alta frecuencia de oscilación por el efecto electromagnético producido por la bobina en la parte frontal del sensor centrado con respecto al eje de la bobina. Así, el oscilador consume una corriente conocida. El núcleo de ferrita concentra y dirige el campo electromagnético en la parte frontal, convirtiéndose en la superficie activa del sensor.

Cuando un objeto metálico interactúa con el campo de alta frecuencia, se inducen corrientes EDDY en la superficie activa. Esto genera una disminución de las líneas de fuerza en el circuito oscilador y, en consecuencia, desciende la amplitud de oscilación.

El circuito detector reconoce un cambio específico en la amplitud y genera una señal, la cual cambia (pilotea) la salida de estado sólido a "ON" u "OFF". Cuando se retira el objeto metálico del área de senado, el oscilador genera el campo, permitiendo al sensor regresar a su estado normal.

Sensor capacitivo

Un sensor capacitivo es adecuado para el caso de querer detectar un objeto no metálico. Para objetos metálicos es más adecuado escoger un sensor inductivo.

Para distancias superiores a los 40 mm es totalmente inadecuado el uso de este tipo de sensores, siendo preferible una detección con sensores ópticos o de barrera.





Sensores Ultrasónicos

Existe una línea versátil de sensores que incluyen 30 mm de laminilla metal y albergues plásticos en dos estilos de albergue rectangulares

Es estrecho análogo y con rendimientos a dispositivos discretos extensamente, sensor múltiple de posicionamiento sensando los rasgos ambientales del entorno del robot.





Los Indicadores.

Todos los sensores ultrasónicos tienen LEDs que indican el estado del rendimiento. También se indica la presencia designada en el cono sónico.


Aplicaciones típicas:


  • Control y verificación de nivel, depósitos, tanques
  • Medida de distancia
  • Control del bucle de entrada-salida de máquinas
  • Control de tensado-destensado

Algunas aplicaciones de los sensores transductores e indicadores:


  • Control de cintas transportadoras,
  • Control de alta velocidad
  • Detección de movimiento
  • Conteo de piezas,
  • Sensado de aberturas en sistemas de seguridad y alarma
  • Sistemas de control como finales de carrera. (PLC´s)
  • Sensor óptico.
  • Sistema de protección tipo barrera en rejillas de acceso en una prensa hidráulica, donde la seguridad del operario es una prioridad.
  • Detección de piezas que viajan a muy alta velocidad en una línea de producción (industria electrónica o embotelladoras).
  • Detección de piezas en el interior de pinzas, en este caso el sensor esta constituido por un emisor y un receptor de infrarrojos ubicados uno frente a otro, de tal forma que la interrupción de la señal emitida, es un indicador de la presencia de un objeto en el interior de las pinzas.

No hay comentarios.:

Publicar un comentario

Principios básicos de PLC